Drag Analysis of Contractile Water Jet Locomoted Micro AUV in Laminar Fluid

نویسندگان

  • M. F. Shaari
  • Tun Hussein Onn
چکیده

Drag analysis is vital to measure the performance of the autonomous underwater vehicle (AUV) as well as the AUV thruster. Most of the previous drag studies is regarding to the shape and swimming method that contribute to the AUV performance. However, few attention was given on drag which influence the development of thruster. Hence, this research was conducted to analyze the drag of the micro AUV in a laminar fluid flow in order to find the optimum thrust that must be gained by a contractile water jet thruster (CWJT). Besides, these studies also focus on the dynamic pressure and skin friction that forms the total drag which acted on the AUV surface. Drag was measured by using pull technique and simulation technique for AUV speed below 0.5ms. The results show that the recorded drag was between 9.0 x 10N and 1.8 x 10N. The trend line between the simulation data and experimental data has no significant difference and thus it shows that the simulation data were verified. Both results exhibits that the drag increase tremendously regarding to the AUV speed increment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Performance of Jet Impingement with Spent Flow Management

The present study proposes novel micro-jet impingement heat sink with effusion holes for flow extraction. The design consists of impingement nozzles surrounded by multiple effusion holes to take away the spent fluid. A three-dimensional numerical model is used for steady, incompressible, laminar flow and conjugate heat transfer for the performance analysis of the proposed design. The computatio...

متن کامل

Numerical Simulation of Laminar Convective Heat Transfer and Pressure Drop of Water Based-Al2O3 Nanofluid as A Non Newtonian Fluid by Computational Fluid Dynamic (CFD)

The convective heat transfer and pressure drop of water based Al2O3 nanofluid in a horizontal tube subject to constant wall temperature condition is investigated by computational fluid dynamic (CFD) method. The Al2O3 nanofluid at five volume concentration of 0.1, 0.5, 1.0, 1.5 and 2 % are applied as a non Newtonian power law and Newtonian fluid with experimentally measured properties of density...

متن کامل

Dispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model

Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...

متن کامل

Aquatic-treadmill walking: quantifying drag force and energy expenditure.

CONTEXT Quantification of the magnitudes of fluid resistance provided by water jets (currents) and their effect on energy expenditure during aquatic-treadmill walking is lacking in the scientific literature. OBJECTIVE To quantify the effect of water-jet intensity on jet velocity, drag force, and oxygen uptake (VO2) during aquatic-treadmill walking. DESIGN Descriptive and repeated measures. ...

متن کامل

Time Dependent Analysis of Micro-tubes Conveying Nanofluids Under Time-Varying Heat Flux

  In this paper the numerical analysis of flow and time dependent heat transfer of micro-tube conveying nanofluid in laminar flow is investigated. In this study, convection heat transfer of nanofluid and base fluid and transient analysis for time-varying heat flux for time step of 0.0001 second are elucidated. It is observed that the pumping power of nanofluid flowing and the maximum temperatur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015